Using NMF for Analyzing War Logs

نویسندگان

  • Dirk Thorleuchter
  • Dirk Van den Poel
چکیده

We investigate a semi-automated identification of technical problems occurred by armed forces weapon systems during mission of war. The proposed methodology is based on a semantic analysis of textual information in reports from soldiers (war logs). Latent semantic indexing (LSI) with non-negative matrix factorization (NMF) as technique from multivariate analysis and linear algebra is used to extract hidden semantic textual patterns from the reports. NMF factorizes the term-by-war log matrix that consists of weighted term frequencies – into two non-negative matrices. This enables natural parts-based representation of the report information and it leads to an easy evaluation by human experts because human brain also uses parts-based representation. For an improved research and technology planning, the identified technical problems are a valuable source of information. A case study extracts technical problems from military logs of the Afghanistan war. Results are compared to a manual analysis written by journalists of ‘Der Spiegel’.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Browsing-Pattern Mining from e-Book Logs with Non-negative Matrix Factorization

In this paper, we report our work-in-progress study about browsing-pattern mining from e-Book logs based on non-negative matrix factorization (NMF). We applied NMF to an observation matrix with 21-page browsing logs of 110 students, and discovered ve kinds of browsing patterns.

متن کامل

Rapid identification of structural phases in combinatorial thin-film libraries using x-ray diffraction and non-negative matrix factorization.

In this work we apply a technique called non-negative matrix factorization (NMF) to the problem of analyzing hundreds of x-ray microdiffraction (microXRD) patterns from a combinatorial materials library. An in-house scanning x-ray microdiffractometer is used to obtain microXRD patterns from 273 different compositions on a single composition spread library. NMF is then used to identify the uniqu...

متن کامل

DC-NMF: nonnegative matrix factorization based on divide-and-conquer for fast clustering and topic modeling

The importance of unsupervised clustering and topic modeling is well recognized with ever-increasing volumes of text data available from numerous sources. Nonnegative matrix factorization (NMF) has proven to be a successful method for cluster and topic discovery in unlabeled data sets. In this paper, we propose a fast algorithm for computing NMF using a divide-and-conquer strategy, called DC-NM...

متن کامل

Spectral Separation of Quantum Dots within Tissue Equivalent Phantom Using Linear Unmixing Methods in Multispectral Fluorescence Reflectance Imaging

Introduction Non-invasive Fluorescent Reflectance Imaging (FRI) is used for accessing physiological and molecular processes in biological media. The aim of this article is to separate the overlapping emission spectra of quantum dots within tissue-equivalent phantom using SVD, Jacobi SVD, and NMF methods in the FRI mode. Materials and Methods In this article, a tissue-like phantom and an optical...

متن کامل

Probabilistic Spectrum Envelope: Categorized Audio-Features Representation for NMF-Based Sound Decomposition

NMF (Non-negative Matrix Factorization) has been one of the most useful techniques for audio signal analysis in recent years. In particular, supervised NMF, in which a large number of samples is used for analyzing a signal, is garnering much attention in sound source separation or noise reduction research. However, because such methods require all the possible samples for the analysis, it is ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012